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Appendix Section S1. Modeling the growth rate of cells in tissue homeostasis circuits.  17	
  

 18	
  

Appendix Figure S1. Adding carrying capacity K to the circuits preserves the conclusions of the study. 19	
  

Simulation of an event where a strong activating mutant arises either in a circuit with monophasic control (A-C) 20	
  

or biphasic control (D-F) with logistic growth with a carrying capacity K. The arrows mark the times when a 21	
  

mutant with a strong activation of the sensing of y arises. As was the case for exponential growth, also under 22	
  

logistic growth the monophasic circuit is susceptible to mutant invasion whereas the biphasic circuit is not. 23	
  

 24	
  

 In this section, we ask whether changing exponential growth to logistic growth in the 25	
  

circuits affects the conclusions. In the main text, we analyzed circuits where cells Z adjust 26	
  

their own growth rate as a function of a signal y, which, in turn, is affected by the size of the 27	
  

tissue. The signal y affects the growth rate of cells by affecting either their proliferation or 28	
  

removal rate, so we can model the dynamics of Z using the following equation: 29	
  

𝑍 = 𝑍 ⋅ 𝜆! 𝑦 − 𝜆!(𝑦)         [1] 30	
  



Where λ+ is the y-dependent proliferation rate of Z and λ- is the y-dependent removal rate of 31	
  

Z. As discussed the main text, the feedback on Z through y can robustly maintain tissue size, 32	
  

but is susceptible to the invasion of mis-sensing mutants. 33	
  

The growth rate of Z can be either logistic or exponential. Exponential growth means 34	
  

that the production rate λ+ does not depend on Z (for example λ+=y), and is relevant when the 35	
  

cells are far from carrying capacity. When the cells are closer to carrying capacity, however, 36	
  

a logistic model more appropriately models the dynamics of Z: 37	
  

𝑍 = 𝑍 ⋅ 𝜆! 𝑦 ⋅ (1− !
!
)− 𝜆!(𝑦)         [1] 38	
  

In which proliferation rate drops to zero as cells approach the carrying capacity K.  39	
  

The conclusions of the manuscript hold both when the growth of the cells is logistic 40	
  

or exponential (Appendix Figure S1): the biphasic circuit is resistant whereas the monophasic 41	
  

circuit is not. 42	
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Appendix Section S2. Modeling input delay in feedback homeostasis circuits. 44	
  

 45	
  

Appendix Figure S2. Simulation of an event where a strong activating mutant arises either in a circuit with 46	
  

monophasic control (A-C) or biphasic control (D-F). The arrows mark the times when a mutant with a strong 47	
  

activation of the sensing of y arises. The circuits are similar to the circuits depicted in Fig. 1B and Fig. 1F, 48	
  

except that Z acts on y with delay modeled by an intermediate variable r with delay parameter τ. As was the case 49	
  

without r, also here the monophasic circuit is susceptible to mutant invasion whereas the biphasic circuit is not. 50	
  

 51	
  

In the main text, we analyzed circuits where cells Z adjust their own growth rate as a 52	
  

function of a signal y, which, in turn, is affected by the size of the tissue. Here, we consider 53	
  

the case where y affects Z with a delay. Delays occur in endocrine circuits, where the level of 54	
  

the regulated variable (e.g. blood glucose) is controlled with a delay relative to its regulating 55	
  

hormone (insulin).  56	
  

In the examples of Figure 1 we used the following equations to model the mutant 57	
  

resistance of the circuits in Fig. 1BF: 58	
  

𝑦 = 𝜇 ⋅ 𝑀 − 𝑍 + 𝑍!"# 𝑦         [1] 59	
  



𝑍 = 𝑍 ⋅ 𝜆! 𝑦 − 𝜆!(𝑦)         [2] 60	
  

We tested whether adding a delay to this system affects the resistance of monophasic or 61	
  

biphasic circuits to sensing mutants. To do so, we modify the equations so they include an 62	
  

intermediate variable r with a typical timescale τ:  63	
  

𝑟 = 𝜏 ⋅ 𝑍 + 𝑍!"# − 𝑟         [1] 64	
  

𝑦 = 𝜇 ⋅ 𝑀 − 𝑟𝑦         [2] 65	
  

𝑍 = 𝑍 ⋅ 𝜆! 𝑦 − 𝜆!(𝑦)         [3] 66	
  

The parameter τ represents the delay of the system. We tested the effect of 3 different 67	
  

values of τ on the resistance to mutants (Appendix Figure S2) - τ=0.01 (slow), τ=1 68	
  

(intermediate) and τ=100 (fast). For all these values of τ, an activating mutant invades the 69	
  

monophasic circuit but does not invade the biphasic circuit. 70	
  

 71	
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Appendix Section S3. Simulation of glucose dynamics and the induction of a glucokinase 73	
  

mutant.   74	
  

 75	
  

Appendix Figure S3. Simulation of a Tamoxifen-induced conditional knock-in of a 6-fold activating mutant on 76	
  

GCK in beta cells. Dynamics were simulated using explicit equations for insulin and glucose dynamics. 77	
  

 78	
  

 Blood glucose levels are regulated by the hormone insulin which secreted by 79	
  

pancreatic beta cells. The dynamics of glucose as a function of insulin can be described by 80	
  

the following minimal model (Bergman, 1989): 81	
  

𝐺 = 𝑢! + 𝑢(𝑡)− (𝐶 + 𝑆!𝐼) ⋅ 𝐺        [1] 82	
  

where I is plasma insulin concentration, 𝑢! is endogenous production of glucose, 𝑢(𝑡) is 83	
  

meal intake, C is glucose removal rate at zero insulin and Si is insulin sensitivity. Secretion of 84	
  

insulin is proportional to beta cell functional mass β and is modeled by the equation: 85	
  

𝐼 = 𝑝𝛽 ⋅ !!.!

!!.!!!!.!
− 𝛾𝐼        [2] 86	
  

Where ρ(G) is a monotonically increasing function of G, γ is the insulin removal rate and p is 87	
  

the insulin secretion per cell. Last, there is also a slow feedback where glucose controls the 88	
  

dynamics of beta cell proliferation and removal (Karin et al., 2016): 89	
  

𝛽 = 𝛽 𝜆!(𝐺)− 𝜆!(𝐺) = 𝛽 ⋅ 𝜆(𝐺)         [3] 90	
  

The function h(G) has a stable fixed point at 𝐺 = 5𝑚𝑀. This slow feedback provides the 91	
  

system with robustness to variation in Si,p since at steady state the dynamics of glucose to 92	
  

any input does not depend on these parameters (e.g. the system shows dynamical 93	
  

compensation (Karin et al., 2016)). 94	
  



 The function h(G) also has an unstable fixed point at some 𝐺 ≫ 5, which results from 95	
  

glucose-dependant toxicity (glucotoxicity). This unstable fixed point can cause paradoxical 96	
  

beta cell death after an increase in glucose levels, which, in a self-reinforcing manner, further 97	
  

increases glucose levels. This process may underlie type 2 diabetes (De Gaetano et al., 2008; 98	
  

Ha et al., 2016; Karin et al., 2016; Topp et al., 2000). For our simulation, which is intended to 99	
  

represent young mice, we set this unstable fixed point to G=13.5mM (Efanova et al., 1998; 100	
  

Maedler et al., 2006). The exact level of the unstable fixed point is not important for our 101	
  

conclusions, since a lower or higher unstable fixed point will work as well (as long as it is 102	
  

significantly smaller than G=30mM). We used the following function to model glucose 103	
  

dependent removal of beta cells: 104	
  

𝜆! 𝐺 = 𝜇! ⋅
1

1+ 𝐺
4

! +
1

1+ 15
𝐺

!  

This death rate is similar to the glucose dependent death curve that is observed by Efanova et 105	
  

al (Efanova et al., 1998). Glucose dependent proliferation rate was modelled as in Karin et al 106	
  

(Karin et al., 2016): 107	
  

𝜆! 𝐺 = 𝜇! ⋅
1

1+ 8.4
𝐺

!.! 

The values of µ+,µ- determine the turnover of beta cell functional mass and were set as: 108	
  

𝜇! = 0.1 ⋅ 𝑑𝑎𝑦!! 

𝜇! = 0.2 ⋅ 𝑑𝑎𝑦!! 

These values correspond to a ~3% turnover of beta cell functional mass per day. All other 109	
  

parameters of the 𝛽𝐼𝐺 model were set as follows (Karin et al., 2016): 110	
  

Parameter	
   Value	
   Units	
  

𝑢!	
   1
30 mM	
  min-­‐1	
  



𝐶	
   10!! min-­‐1	
  

𝑆! 	
   5 ⋅ 10!!	
   ml	
  μU-­‐1	
  min-­‐1	
  

𝑝	
   0.03	
   mg-­‐1	
  μU	
  ml-­‐1	
  min-­‐1	
  

𝛼	
   8.4	
   mM	
  

𝛾	
   0.3	
   min-­‐1	
  

 111	
  

 A beta-cell mutant with k-fold activation on the sensing of glucose has both a k-fold 112	
  

scaling of insulin secretion (𝜌 𝐺 → 𝜌(𝑘𝐺)) and a k-fold scaling in its response in terms of 113	
  

growth rate (𝜆 𝐺 → 𝜆(𝑘𝐺)). Therefore, to simulate the Y214C mutant (that has a 6-fold 114	
  

activation in glucose sensing) we simply replaced the secretion and growth functions 115	
  

accordingly, using 𝑘 = 6. The combined equation for insulin secretion is the following: 116	
  

𝐼 = 𝑝𝛽 ⋅
𝐺!.!

𝛼!.! + 𝐺!.! + 𝑝𝛽!"# ⋅
(𝑘𝐺)!.!

𝛼!.! + (𝑘𝐺)!.! − 𝛾𝐼 

 Finally, in the experiment the Cre-mediated transgene was induced by tamoxifen. We 117	
  

simulated tamoxifen as converting normal beta cells to mutated beta cells: 118	
  

𝛽 = 𝛽 𝜆! 𝐺 − 𝜆! 𝐺 − 𝑇  

𝛽!"# = 𝛽!"# 𝜆! 𝑘𝐺 − 𝜆! 𝑘𝐺 ) + 𝛽𝑇 

with T representing the concentration of tamoxifen in the blood. The dynamics of tamoxifen 119	
  

were simulated as exponential degradation with a half-life of 16 hours (Robinson et al., 1991) 120	
  

𝑇 = ! !"# !
!"⋅!"

𝑇.  121	
  

The initial values used for the simulation: 122	
  

Parameter	
   Value	
   Units	
  

𝑇	
   0.27 day-­‐1	
  

𝐺	
   4.966667 mM	
  



𝐼	
   11.42	
   μU	
  ml-­‐1	
  

𝛽	
   400	
   mg	
  

𝛽!"#	
   0	
   mg	
  

 123	
  

 We simulated the dynamics of the system both by (i) assuming a quasi-steady-state 124	
  

for beta cell mass and solving equations [1],[2] to compute glucose levels, and (ii) explicitly 125	
  

modeling the dynamics of glucose and insulin using equations [1], [2], which adds a delay to 126	
  

the circuit. The model was simulated for 𝑡 = 40 ⋅ 24 ⋅ 60 minutes. The results from (i) are 127	
  

provided in Fig. 1 in the main text and the results from (ii) are provided here as a 128	
  

supplementary figure (Appendix Figure S3). Because beta cell mass changes much slower 129	
  

than glucose, both methods yield highly similar results. 130	
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Appendix Section S4. Derivation of the evolutionary stability of a circuit with biphasic 132	
  

control.  133	
  

Here we derive a formula that approximates the evolutionary stability of a circuit with 134	
  

biphasic control. First, we provide a definition for the evolutionary stability of a circuit. 135	
  

Definition 1.1. The strategy S of a cell is defined as its (daily) death and proliferation 136	
  

probabilities for all inputs c: S={d(y),p(y)}. A strategy S’={d’(y),p’(y)} is denoted as an 137	
  

alternative strategy to S if there are inputs y for which either 𝑝′ 𝑦 ≠ 𝑝 𝑦 ,𝑑′ 𝑦 ≠ 𝑑 𝑦 . 138	
  

The strategy that is adopted by a population of cells, as well as the output response of these 139	
  

cells to the input 𝑦, determines the function of the homeostatic circuit. 140	
  

Definition 1.2. The evolutionary stability of a strategy S is defined as the probability that 141	
  

given that the entire population of cells adopts S, it will not be invaded by an alternative 142	
  

strategy S’  by time t. 143	
  

If the entire population adopts a strategy S then for an alternative strategy S’ to invade 144	
  

the circuit, it must first arise via mutation. The probability that S’ will arise via mutation from 145	
  

a cell with a strategy S is the probability of a transition S →S’, which we denote it as µS(S’). 146	
  

After a mutant arises, it must then invade the population. We denote the probability that such 147	
  

a mutant will invade the population as ρS(S’).  148	
  

For a circuit of N interacting cells with a turnover rate 𝜏!!, the probability that no 149	
  

invading alternative strategy will arise by time t is: 150	
  

𝜁! 𝑡 = 1− 𝜇! 𝑆 ′ 𝜌! 𝑆 ′

! ′

!!!!!

        [1] 

We estimate the invasion probability ρS(S’) by modeling the evolutionary dynamics of 151	
  

the circuit using a Moran-like stochastic process with variable death and proliferation 152	
  

probabilities. 153	
  



Definition 1.2. Consider a population of cells with strategies {𝑆!,… , 𝑆!} with corresponding 154	
  

death and proliferation probabilities Si={di,pi}. The Extended Moran Process (EMP) is 155	
  

defined as follows: in each round, one strategy replicates and one strategy is eliminated. The 156	
  

probability for elimination for strategy 𝑆! is !!
!!!

!!!
 and the probability for replication is 157	
  

!!
!!!

!!!
. The relative fitness of a strategy is defined as 𝑟 = !!

!!
. 158	
  

Lemma 1.1. The probability that a strategy 𝑆! will take over the population in the Extended 159	
  

Moran Process is: 𝜌!! =
!!!!
!! !

!!
. 160	
  

Proof. The proof is the same as the proof for the fixation probability of the standard Moran 161	
  

Process (Nowak, 2006), by simply setting the death probability as non-constant. 162	
  

Theorem 1.1. The probability that an alternative strategy S’={d’(y),p’(y)} invades a 163	
  

homeostatic circuit is:   164	
  

𝜌! 𝑆 ′ ≈
1− 1𝑟
1− 1

𝑟!
        [2] 

where 𝑟 = !′(!!")
!′(!!")

 with y=yST being the homeostatic set-point, and N being the number of cells 165	
  

in the original population at steady-state. For a N>10 and r>1 this is approximately 166	
  

𝜌! 𝑆 ′|𝑟 > 1 ≈ 1− !
!
  , while for r<1 the invasion probability approaches zero: 𝜌! 𝑆 ′|𝑟 <167	
  

1 ≈ 0.  168	
  

Proof. This result follows directly from Lemma 1.1 when we model the evolutionary 169	
  

dynamics of the population using EMP. Note that the assumptions of EMP are not met 170	
  

precisely – if cells with S’ proliferate more rapidly than cells with S die, then the population 171	
  

size exceeds N and 𝑦 ≠ 𝑦!" before S’ invades the circuit. Nevertheless, for a mutant with a 172	
  

fitness advantage, the highest probability of elimination occurs when its frequency is 173	
  



relatively small, and thus when the overall number of cells is approximately N and the 174	
  

𝑦 ≈ 𝑦!".  175	
  

Next we analyze the transition probability 𝜇! 𝑆 ′  for some alternative strategy 𝑆 ′. We 176	
  

assume that the transition 𝑆 → 𝑆 ′ results from random mutations in enzymes. Consider such 177	
  

an enzyme with an output that is described by a Hill equation: 𝑓(𝑥) = 𝑣!
!

!! !!!! !. A 178	
  

mutation that changes 𝐾 → 𝐾′ results in a scaled output response: 179	
  

𝑓 ′ 𝑥 = 𝑣!"#
1

1+ 𝐾′𝑥!! ! = 𝑣!"#
1

1+ 𝐾 ⋅ (𝑥!!𝐾!!𝐾 ′) ! = 𝑓(𝑥!!𝐾!!𝐾 ′) 

We define 𝜒 = 𝐾!!𝐾 ′. In a circuit with biphasic control where the enzyme is upstream both 180	
  

death and proliferation this mutation will result in an alternative strategy S’={d(𝜒y),p(𝜒y)}. 181	
  

Other mutations that change 𝑣!"# or 𝑛 may have an effect on input sensing that is not 182	
  

necessarily scaling (the effect depends on the structure of the signaling network), but for the 183	
  

simplicity of the analysis we approximate the effect of every mutation as if it scales the input.  184	
  

Thus, every mutation that affects sensing corresponds to some scaling value 𝜒. The 185	
  

scaling 𝜒 can range from 𝜒 = 0 (locked off) to 𝜒 = ∞ (locked on) with 𝜒 = 1 being a neutral 186	
  

mutation with respect to sensing. We define the probability density function 𝑃! 𝜒  over 187	
  

𝜒 ∈ 0,∞  to approximate the probability that a mutant with a scaling 𝜒 will arise by 188	
  

mutation from a population with strategy 𝑆. The measure 𝜇!(𝜒) is defined to be equal to 189	
  

𝑃! 𝜒  for all 𝜒 ≠ 1 and 𝜇! 1 = 0. In addition, for every scaling 𝜒 we can infer the invasion 190	
  

probability using [Theorem 1.1]: 191	
  

𝑟 𝜒 =
𝑝 𝜒𝑦!"
𝑑 𝜒𝑦!"

        [3] 

 The evolutionary stability of the circuit can be inferred by integrating over all possible 192	
  

values of 𝜒:  193	
  

𝜁! 𝑡 = 𝑒!!
!!! !"# !!!! ! !! ! !"∞

!         [4] 



 To further simplify the analysis we use a zero-order approximation of 𝜇! 𝜒 = 𝜇! 194	
  

around 𝜒 = 1, which is the relevant range where sensing mutants may have a fitness 195	
  

advantage over wild-type cells. The value of 𝜇! depends both on DNA replication fidelity and 196	
  

on the number of mutations that affect 𝜒, which may be, for instance, the number of 197	
  

mutations that affect the kinetics or expression level of a rate-limiting enzyme.  198	
  

 Let us now consider a circuit with biphasic control, an unstable fixed point 𝑦!"# and a 199	
  

stable fixed point 𝑦!". The input range where proliferation exceeds death is 𝑦!" ≤ 𝑦 ≤ 𝑦!"# 200	
  

and we assume a step change in that range so ! !
! !

= 𝜈 in that range. The population size is 201	
  

𝑁 > 10 and we denote 𝛿 = !!"#
!!"

− 1. Thus, only for 1 < 𝜒 < 1+ 𝛿 is the invasion 202	
  

probability 𝜌! 𝜒  non-negligible and is equal to 𝜌! 𝜒 = 1− 1
!
. The evolutionary stability of 203	
  

this circuit is thus:  204	
  

𝜁! 𝑡 = 𝑒
!!!1! log 1!!! 1!

1
! !"1!!

1 ≈ 𝑒!!
!1! !0 1!

1
! !"1!!

1  

= 𝑒!!
!1!"!0 1!

1
!  
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Appendix Section S5. Evolutionary stability of circuits that consist of multiple compartments. 206	
  

 207	
  

Appendix Figure S4. Architectures of compartmentalizations for intercellular communication. 208	
  

 209	
  

Tissues of multicellular organisms are often subdivided into compartments such as intestinal 210	
  

crypts or pancreatic islets (Jo et al., 2007; Michor et al., 2003; Mintz, 1971). The number of 211	
  

cells in each compartment is limited and cannot exceed a certain size, and thus they confine 212	
  

invading mutants. We now extend our analysis to the case where the cells in a circuit are 213	
  

subdivided into many compartments (Appendix Figure S4). In addition to the non-214	
  

compartmentalized case (Appendix Figure S4A), there are two possible scenarios: either the 215	
  

cellular communication is local to each compartment (Appendix Figure S4B, e.g. paracrine 216	
  

signaling) or the communication is systemic, between compartments (Appendix Figure S4C, 217	
  

e.g. the control of metabolites by endocrine tissues).  218	
  

Local communication: If each compartment is of similar size then each compartment has the 219	
  

same evolutionary stability ζ. This value ζ is the same as the expected fraction of 220	
  

compartments that have an invading mutant by time t. 221	
  

Systemic communication: Consider now the case where the communication occurs across the 222	
  

entire population and the circuit has only one non-trivial stable fixed-point. If a mutant 223	
  

invades a compartment then the homeostatic set point for all the cells in that compartment is 224	
  

different from that of the rest of the population. Recall that in the non-compartmentalized 225	
  



case the system can be at steady state only when all the cells of the population have the same 226	
  

strategy (that is, the same scaling χ). This is not the case when the population is subdivided 227	
  

into compartments. The reason for this is that while the cells in the invading compartment 228	
  

may have a positive growth rate when the system is at its original homeostatic set-point, they 229	
  

cannot grow beyond the limits of their compartment unless they acquire additional mutations. 230	
  

Thus, if the fraction of invaded compartments is small then the original homeostatic set-point 231	
  

is still maintained and the fraction of invaded compartments is the same as the evolutionary 232	
  

stability of each compartment: ζ. 233	
  

 What is the optimal compartment size for a population of N cells? As is the case in the 234	
  

somatic evolution of cancer (Michor et al., 2003) there is a tradeoff between large and small 235	
  

compartments. Large compartments are more robust against random drift while small 236	
  

compartments are more robust against mutants with a fitness advantage. To illustrate why 237	
  

this is the case we consider two extremes: very large and very small compartments. If the 238	
  

compartments are very large then, in case an invading mutant arises, it takes over a large part 239	
  

of the population and has a larger effect on circuit function. Very small compartments, on the 240	
  

other hand, are more susceptible to being taken over by mutants that are neutral or have a 241	
  

fitness disadvantage (Michor et al., 2003).  242	
  

 243	
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